US009311208B2

a2z United States Patent (10) Patent No.: US 9,311,208 B2
Messer (45) Date of Patent: Apr. 12,2016
(54) SYSTEM AND METHOD FOR GENERATING 20037/6610534’251? §21 : lggggg grinlfme(:iyer elt al. 7(7);12@8
erglund et al. ...
FIELD REPLACEABLE UNIT INFORMATION 2004/0228063 Al* 11/2004 Hawkinsetal. ... .. 361/115
FILES 2004/0230866 AL* 11/2004 Yates et al. ...cc.coverrrnn 714/25
2005/0005268 Al* 1/2005 Zilavyetal. ... .. 717/170
(71)  Applicant: AMERICAN MEGATRENDS, INC., 2005/0021260 Al*  1/2005 Robertson et al. . 702/75
2005/0091438 Al* 4/2005 Chatterjee ... ... 710/315
Norcross, GA (US) 20050258241 Al* 11/2005 McNuttetal. ... 235/385
2006/0167919 Al* 7/2006 Hsieh .............. ... 707/101
(72) Inventor: Jason Andrew Messer, Jefferson, GA 2007/0089446 Al*  4/2007 Li:on et al. . 62/259.2
(as) 2008/0307502 ALl™* 12/2008 HUNZ .....ccovvvvviviinrienenn 726/4
2012/0271983 Al* 10/2012 Chenetal. .. ... 711/103
(73) Assignee: AMERICAN MEGATRENDS, INC. 2013/0204984 Al* 82013 Meyeretal. ... ... 709/220
’ ? ’ 2014/0122753 Al* 52014 Chiuetal. ........cccoeeee. 710/74
Norcross, GA (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this ) N
patent is extended or adjusted under 35 IPMI Platform Man.agement FRU Information Storage Definition
U.S.C. 154(b) by 375 days. v.1.0, Iptel Corporatl_on _et al.,_Feb. 28, 2013. _
Managing and Monitoring High-Performance Computing Clusters
1 3k
(21) Appl. No.: 13/963,820 with IPMI, Dell In¢, Oct. 2004,
% o .
(22) Filed:  Aug.9,2013 cited by examiner
. L Primary Examiner — Khanh Dang
(65) Prior Publication Data (74) Attorney, Agent, or Firm —Locke Lord LLP; Tim
US 2015/0046761 Al Feb. 12,2015 Tingkang Xia, Esq.
(51) Imt.ClL (57) ABSTRACT
GOGF 11/00 (2006.01) Technologies are described herein for generating field
GOG6F 11/30 (2006.01) replaceable unit (FRU) information files in a format that is
GOGF 13/36 (2006.01) readable by a management controller in accordance with
(52) US.CL IPMI such that the FRU and the management controller are
CPC s GO6F 11/3051 (2013.01); GOGF 11/00 interoperable. In particular, a FRU installation station is in
(2013.01); GO6F 13/36 (2013.01) operative communication with a general purpose computer
(58) Field of Classification Search comprising a FRU information conversion module. A script
USPC ... 710/8, 10, 15, 19, 62, 305, 313, 315; utilized by the FRU information conversion module is con-
o 799/220, 221 figured to receive FRU information relating to a specified
See application file for complete search history. FRU and convert the information FRU binary files or a FRU
. image binary. The FRU binary files or FRU image binary are
(56) References Cited then received by the FRU installation station where they are

U.S. PATENT DOCUMENTS

subsequently transmitted to the inventory device of the speci-
fied FRU storage space according to the specified IPMI stan-

5,293,556 A * 3/1994 Hilletal. ..o 702/184  dard.
7,168,007 B2* 1/2007 Gilstrap et al. ... .. 714/37
7,350,115 B2* 3/2008 Mathew etal. ................. 714/46
BASEROARD FRUIG”
wh CO{"A:’,OZ“G ueNCRY
cPy
136
.
rrrrrrrrrrrrrrrrr ,\?55
16b{-\’§::1’ w0
- 28
rop AT

20 Claims, 3 Drawing Sheets

106

<




US 9,311,208 B2

Sheet 1 of 3

Apr. 12,2016

U.S. Patent

N

281

00}

- aoer |
aInyd
1%
el
A
A e —
[
- ong
oET 201
Ndo A ~
. o6y | BO51 | | |
ainyd| ainys | |
o NV jddns |z
AHORIN ONFI00D wamod | [\
5661 =
Qirzd QHYO83sYa




US 9,311,208 B2

Sheet 2 of 3

Apr. 12,2016

U.S. Patent

[ir44
FINION NOISHIANGO
NOILYWHOINI e

¢ Ol

FA%4
FOVAHTLNI

...............

g
NOILVLS
NOLLYTIVLISNI
AGYNIQ iddd




US 9,311,208 B2

Sheet 3 of 3

Apr. 12,2016

U.S. Patent

(1
Qiftdd

08t
gEE

£ Oid

082
NOLLVYLE
NOUYTIVLSN
AdYNIE NHS

051
GISE

oar
e




US 9,311,208 B2

1
SYSTEM AND METHOD FOR GENERATING
FIELD REPLACEABLE UNIT INFORMATION
FILES

FIELD

The present disclosure generally relates to generation of
information files for use in incorporating modular field
replaceable units (FRUs), which are incorporated into com-
puters and other pieces of electronic equipment.

BACKGROUND

In early computer systems, it was often difficult or even
impossible to replace certain hardware components, e.g., the
power supply, memory, and 1/O controllers, after the com-
puter had been manufactured. For example, such components
might be hardwired together and attempting to remove the
components might irreversible damage the computer. In cer-
tain cases, it was possible to remove such components by
breaking and re-establishing physical connections (e.g., by
soldering); however, such processes were tedious and time-
consuming and typically required a skilled technician.

Modern computer systems frequently incorporate field-
replaceable units (FRUs), which are components such as the
power supply, memory, and /O controllers that can be
replaced in the field (i.e., at user locations). These FRUs
generally interface with a computer’s modular hardware
interfaces, and thus FRUs can typically be removed by a
relatively unskilled technician. Removing an FRU may, for
example, only require removing a few screws and extracting
the FRU from the computer’s housing.

Generally, FRUs communicate with a computer system’s
management controller, such as a baseboard management
controller (BMC). FRUs communicate with the BMC (or
other management controller) using the Intelligent Platform
Management Interface (IPMI), which is the protocol and set
of commands that allows the various FRUs and management
controller to communicate. FRU information is generally
stored in a FRU information device (e.g., EEPROM). While
IPMI specifies the protocols and commands that allow the
FRUs to communicate with the management controller, as
well as recommending the storage organization of the FRU
Information Device, FRU information must still be properly
formatted such that it can be processed by the management
controller.

Therefore, there is a long-felt but unresolved need for a
system and method for efficiently and effectively generating
FRU information data into a format that is readable by a
management controller in accordance with IPMI such that the
FRU and the management controller are interoperable.

SUMMARY

Technologies are described herein for generating field
replaceable unit (FRU) information files in a format that is
readable by a management controller in accordance with
IPMI such that the FRU and the management controller are
interoperable. In particular, according to one aspect, a FRU
installation station is in operative communication with a gen-
eral purpose computer comprising a FRU information con-
version module. A script utilized by the FRU information
conversion module is configured to receive FRU information
relating to a specified FRU and convert the information FRU
binary files or a FRU image binary. The FRU binary files or
FRU image binary are then received by the FRU installation

10

30

35

40

45

55

2

station where they are subsequently transmitted to the inven-
tory device of the specified FRU storage space according to
the specified IPMI standard.

One aspect of the present disclosure relates to a system
comprising an information conversion module that comprises
a processor and a non-volatile memory storing a computer-
executable program that, when executed by the processor, is
configured to read a script file comprising information relat-
ing to a field replaceable unit (FRU); determine a first indi-
cator specifying a FRU information device area in accordance
with an IPMI format; identify a second indicator specifying a
value relating to the FRU information device area; generate a
data unit comprising information corresponding to the value
in accordance with the IPMI format; and write the data unit to
a FRU image binary.

A further aspect of the present disclosure relates to a
method comprising the steps of reading a script file compris-
ing information relating to a FRU; determining a first indica-
tor specifying a FRU information device area in accordance
with an IPMI format; identifying second indicator specitying
a value relating to the FRU information device area; generat-
ing a data unit comprising information corresponding to the
value in accordance with the IPMI format; and writing the
dataunit to a FRU image binary. In one embodiment, the steps
are carried out via an information conversion module com-
prising a processor.

A further aspect of the present disclosure relates to a non-
transitory computer readable medium storing executable
instructions configured to cause a computer system to execute
a method comprising the steps of reading a script file com-
prising information relating to a field replaceable unit (FRU);
determining a first indicator specitying a FRU information
device area in accordance with an IPMI format; identifying a
second indicator specifying a value relating to the FRU infor-
mation device area; generating a data unit comprising infor-
mation corresponding to the value in accordance with the
IPMI format; and writing via the information conversion
module the data unit to a FRU image binary. In one embodi-
ment, the method steps are carried out via an information
conversion module comprising a processor.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended that this Summary be used to
limit the scope of the claimed subject matter. Furthermore,
the claimed subject matter is not limited to implementations
that solve any or all disadvantages noted in any part of this
disclosure.

These and various other features as well as advantages,
which characterize the technologies presented herein, will be
apparent from a reading of the following detailed description
and a review of the associated drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate one or more
embodiments of the disclosure and, together with the written
description, serve to explain the principles of the disclosure.
Wherever possible, the same reference numbers are used
throughout the drawings to refer to the same or like elements
of an embodiment, and wherein:

FIG. 1 schematically depicts an exemplary, stand-alone
computer system, according to one embodiment of the
present disclosure;

FIG. 2 illustrates a simplified illustration of a FRU instal-
lation station in operative communication with a general pur-



US 9,311,208 B2

3

pose computer implementing a FRU conversion module that
utilizes a proprietary script language, according to one
embodiment of the present disclosure;

FIG. 3 illustrates a FRU installation station operatively
connected to a plurality of FRU devices.

DETAILED DESCRIPTION

The present disclosure is more particularly described in the
following examples that are intended as illustrative only since
numerous modifications and variations therein will be appar-
ent to those skilled in the art. Various embodiments of the
disclosure are now described in detail. Referring to the draw-
ings, like numbers, if any, indicate like components through-
out the views. As used in the description herein and through-
outthe claims that follow, the meaning of “a”, “an”, and “the”
includes plural reference unless the context clearly dictates
otherwise. Also, as used in the description herein and
throughout the claims that follow, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise. Moreover, titles or subtitles may be used in the
specification for the convenience of a reader, which shall have
no influence on the scope of the present disclosure. Addition-
ally, some terms used in this specification are more specifi-
cally defined below.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the disclo-
sure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip-
tion of the disclosure. For convenience, certain terms may be
highlighted, for example using italics and/or quotation marks.
The use of highlighting has no influence on the scope and
meaning of a term; the scope and meaning of a term is the
same, in the same context, whether or not it is highlighted. It
will be appreciated that same thing can be said in more than
one way. Consequently, alternative language and synonyms
may be used for any one or more of the terms discussed
herein, nor is any special significance to be placed upon
whether or not a term is elaborated or discussed herein. Syn-
onyms for certain terms are provided. A recital of one or more
synonyms does not exclude the use of other synonyms. The
use of examples anywhere in this specification including
examples of any terms discussed herein is illustrative only,
and in no way limits the scope and meaning of the disclosure
or of any exemplified term. Likewise, the disclosure is not
limited to various embodiments given in this specification.

Unless otherwise defined, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document, includ-
ing definitions will control.

As used herein, “around”, “about” or “approximately”
shall generally mean within 20 percent, preferably within 10
percent, and more preferably within 5 percent of a given value
or range. Numerical quantities given herein are approximate,
meaning that the term “around”, “about” or “approximately”
can be inferred if not expressly stated.

As used herein, “plurality” means two or more.

As used herein, the terms “comprising,” “including,” “car-
rying,” “having,” “containing,” “involving,” and the like are to
be understood to be open-ended, i.e., to mean including but
not limited to.

Asusedherein, the phrase at least one of A, B, and C should
be construed to mean a logical (A or B or C), using a non-
exclusive logical OR. It should be understood that one or

23

29 <

10

15

20

25

30

35

40

45

50

55

60

65

4

more steps within a method may be executed in different
order (or concurrently) without altering the principles of the
present disclosure.

As used herein, the term module may refer to, be part of, or
include an Application Specific Integrated Circuit (ASIC); an
electronic circuit; a combinational logic circuit; a field pro-
grammable gate array (FPGA); a processor (shared, dedi-
cated, or group) that executes code; other suitable hardware
components that provide the described functionality; or a
combination of some or all of the above, such as in a system-
on-chip. The term module may include memory (shared,
dedicated, or group) that stores code executed by the proces-
sor.

The term code, as used above, may include software, firm-
ware, and/or microcode, and may refer to programs, routines,
functions, classes, and/or objects. The term shared, as used
above, means that some or all code from multiple modules
may be executed using a single (shared) processor. In addi-
tion, some or all code from multiple modules may be stored
by a single (shared) memory. The term group, as used above,
means that some or all code from a single module may be
executed using a group of processors. In addition, some or all
code from a single module may be stored using a group of
memories.

The apparatuses and methods described herein may be
implemented by one or more computer programs executed by
one or more processors. The computer programs include pro-
cessor-executable instructions that are stored on a non-tran-
sitory tangible computer readable medium. The computer
programs may also include stored data. Non-limiting
examples of the non-transitory tangible computer readable
medium are nonvolatile memory, magnetic storage, and opti-
cal storage.

The present disclosure will now be described more fully
hereinafter with reference to the accompanying drawings, in
which embodiments of the disclosure are shown. This disclo-
sure may, however, be embodied in many different forms and
should not be construed as limited to the embodiments set
forth herein; rather, these embodiments are provided so that
this disclosure will be thorough and complete, and will fully
convey the scope of the disclosure to those skilled in the art.
Like numbers refer to like elements throughout.

The present disclosure will now be described more fully
hereinafter with reference to the accompanying drawings, in
which embodiments of the disclosure are shown. This disclo-
sure may, however, be embodied in many different forms and
should not be construed as limited to the embodiments set
forth herein; rather, these embodiments are provided so that
this disclosure will be thorough and complete, and will fully
convey the scope of the disclosure to those skilled in the art.
Like numbers refer to like elements throughout.

Referring now to FIG. 1, an exemplary computer system
100 configuration is shown. According to one embodiment,
the computer system 100 is a stand-alone, general purpose
computer system. Alternatively, the computer system 100
may be a special purpose computer system or a system that
incorporates various interconnected systems, such as a client-
server network. As will be understood by one of ordinary skill
in the art, the computer system 100 of FIG. 1 only represents
an exemplary embodiment and should not be considered to
limit the disclosure in any manner.

As shown in the FIG. 1 embodiment, the computer system
100 has a motherboard or baseboard 102, which typically is a
printed circuit board to which various components and
devices may be connected by way of an electrical communi-
cation path such as a system bus 105. As shown in the FIG. 1
embodiment, the computer system 102 comprises various



US 9,311,208 B2

5

components, such as a cooling fan 110, memory 120, central
processing unit (CPU) 130, baseboard management control-
ler (BMC) 140, an input/output module 150, and a general-
purpose power supply 180. While not shown, it is contem-
plated that a computer system could comprise various other
components.

In certain embodiments, some of the components of the as
the computer system 100 are interconnected with a simple
bus-like interconnect such as a system bus 105. The system
bus 105 typically serves as a communication path for con-
necting hardware components such as the CPU 130, memory
120, and input/output module 150. Typically, a system bus
provides a two-way communication path for all components
connected to the system bus. Further, in certain embodiments,
the power supply 180, the cooling fan 110, and the BMC 140
are connected through a system management bus 107, which
itself is connected to the system bus 105. In general, the
component that initiates a communication on a bus is referred
to as a “master” component and the component to which the
initial communication is sent on the bus is referred to as a
“slave” component. A master component therefore issues an
initial command to or initially requests information from a
slave component. Typically, each slave component is
addressed, and thus communicatively accessible to master
components, by a particular slave address. In general, both
master components and slave components are operable to
transmit and receive communications over a system bus.

Further, though not shown, it is typical that a computer
system 100 comprises various sensors that monitor, for
example, heal-related aspects associated with the computer
system 100 (e.g., temperature, voltage across or applied to a
system component, available capacity of a system memory
device, etc.). Typically, the BMC 140 is communicatively
coupled to such sensors via the system management bus 107,
and the BMC 140 generally functions as the master, whereas
the sensors function as the slaves. The BMC may also com-
municated with components such as the cooling fan 110 via
the system management bus 107. Buses and the associated
functionality of master-slave communications are well-
known to those skilled in the art.

In certain embodiments, the general-purpose power supply
180 can be a FRU and can be removed from the power supply
chassis 182. The power supply 180 can communicate with the
baseboard 102 and various other components through the
system management bus 107. The exemplary power supply
180 will be discussed further in relation to FIG. 2.

In certain embodiments, the CPU 130 is a standard central
processor that performs arithmetic and logical operations
necessary for the operation of the computer system 100. As
will be understood, like many electrical components, the CPU
130 dissipates heat while operating, and thus cooling fan 110
is used to cool the CPU 130, according to one embodiment.

In certain embodiments, the I/O module 150 is connected
to akeyboard 162, a display monitor 164, and various storage
devices, such as, without limitation, a disk storage unit 166
and other external storage unit 168. Various other external
components could be connected to the computer system 100
via the I/O module 150.

In certain embodiments, the input/output (I/O) module 150
allows for communication between any number and type of
peripheral devices and the system bus 105. Generally, com-
munications originating from a peripheral device and
intended for the CPU 130, the BMC 140, or any other com-
ponent coupled to the system bus 105 must pass through the
1/0 module 150 to the system bus 105 and then on to the
intended component.

20

30

40

45

50

55

6

In general, the BMC 140, as shown in the FIG. 1 embodi-
ment, is a microcontroller that monitors operation of the
computer system 100. In certain embodiments, the BMC 104
monitors health-related aspects associated with the computer
system 100, such as, the temperature of one or more compo-
nents of the computer system 100, speed of rotational com-
ponents (e.g., spindle motor, CPU Fan, etc.) within the sys-
tem, the voltage across or applied to one or more components
within the system, and the available or used capacity of
memory devices within the system 100. Generally, the BMC
140 is communicatively connected to the various other com-
ponents (e.g., CPU 130, cooling fan 110, or various others
such as tachometers, heat sensors, voltage meters, amp
meters, digital and analog sensors, etc.), and the components
may also include sensor devices for measuring various oper-
ating and performance-related parameters within the com-
puter system 100.

According to the present disclosure, the firmware of the
BMC 140 adheres to the Intelligent Platform Management
Interface (IPMI) industry standard. According to the FIG. 1
embodiment, the BMC 140 and associated firmware are part
of a computer management subsystem composed of hard-
ware, firmware, and various software for the purpose of
autonomous monitoring, recovery, and control of the com-
puter system’s 100 health. In general, [IPMI is a specification
for hardware and firmware that monitors and controls a com-
puter system 100 independently of the main processors and
system management software or operating system (OS). The
IPMI specification provides a common message-based inter-
face for accessing all of the manageable features in a com-
patible computer. IPMI includes a rich set of predefined com-
mands for reading temperature, voltage, fan speed, chassis
intrusion, and other parameters. System event logs, hardware
watchdogs, and power control can also be accessed through
IPMLI. In this manner, IPMI defines protocols for accessing
the various parameters collected by a BMC 120 through an
operating system or through an external connection, such as
through a network or serial connection. Additional details
regarding IPMI can be found in the IPMI Specification (Ver-
sion 2.0), which is publicly available from INTEL. CORPO-
RATION, and which is incorporated herein by reference.

Further, IPMI allows for quick and easy replacement of
system components such as FRUs because, as noted, IPMI is
an open standard hardware management interface specifica-
tion that defines the manner in which unique devices can
communicate with a BMC 140 or CPU 130 or other devices.

In general, the BMC 140 is the primary management con-
troller in an IPMI implementation and typically provides the
intelligence behind the IPMI. In certain embodiments, the
BMC 140 manages the interface between system manage-
ment software (i.e., system software that runs on the OS) and
platform-management hardware and firmware. Further, the
BMC provides autonomous monitoring, event logging, and
recovery control while also serving as the gateway between
system management software and the intelligent platform
management bus (IPMB), which is the architecture, protocol,
and implementation of'a bus that supports IPMI. According to
one embodiment, the IPMB is built on I°C and provides a
communications path between various management control-
lers and other devices. Further, in one embodiment, the BMC
140 controls the System Event Log (SEL), Sensor Data
Record (SDR) Repository, and BMC FRU and initialization
information.

As noted, in certain embodiments, the BMC 140 monitors
operating and performance-related parameters received from
various components of the computer system 100 in order to
determine whether an “event” is occurring within the system



US 9,311,208 B2

7

100. For example, the BMC 140 may monitor operation of the
CPU 130 (for example, by way of a CPU temperature sensor)
and the cooling fan 110 to determine whether certain operat-
ing or performance related parameters exceed or fall below
prescribed threshold ranges of operation, such as the tempera-
ture being dissipated by the cooling fan 110 exceeding a
prescribed temperature.

According to one embodiment, the BMC 140 may also
control one or more components of the computer system 100
in response to the occurrence of an event. For example, upon
determining the temperature being dissipated exceeds a
threshold, the BMC 140 may initiate operation of the cooling
fan 110. In addition, it is contemplated that the BMC 140 may
be connected to and receive sensed information from compo-
nents connected directly to a contact pin of the BMC 140 or
indirectly by way of a bus aside from the system bus 105 or
other management bus.

Further, according to one embodiment, an IPMI comprises
various components in addition to the BMC 140. Generally,
an IPMI comprises an intelligent platform management bus
(IPMB), which is an I?C-based serial bus that is routed
between various modules and components of the computer
system 100. Additionally, an IPMI may comprise various
private management buses, which can be I°C buses that are
accessed via a management controller by using special IPMI
commands for low-level I>C access.

Generally, management controllers such as the BMC 140
communicate with FRU devices and each other using IPMI
commands over the IPMB. Non-intelligent devices, such as
FRU inventory devices (which will be discussed below) do
notunderstand IPMI commands; however, the FRU inventory
devices can be accessed by a management controller such as
a BMC 140 using a low-level I°C command (e.g., Master
Write-Read I°C).

As shown in the FIG. 1 embodiment and as previously
discussed, the various computer system 100 components are
designed as field-replaceable units (FRUs). As previously
indicated, a FRU is a device assembly capable of being
replaced quickly and easily in the field. Further, as previously
indicated, FRU devices can be integrated into a computer
system 100 via an IPMI implementation.

In certain embodiments, according to the IPMI standard, as
shown in the FIG. 1 embodiment, the various FRU devices
each include a FRU information device (also referred to
herein as a “FRU inventory device” or “FRUID”), which is a
storage device for storing inventory information related to
each FRU. For example, the power supply 180 can have a
FRUID 190a. The various other FRU devices can each have a
FRUID 1905. The baseboard 102 can have a FRUID 190c.
Typically, a FRUID is a non-intelligent device (e.g.,
EEPROM or SEEPROM chip) that does not understand IPMI
commands. An EEPROM is an electrically erasable program-
mable read-only memory, which is a non-volatile memory
used in computers or electronic devices to store small
amounts of data that must be saved after power is removed
from the device. Further, serial EEPROM (i.e., SEEPROM) is
an EEPROM chip that uses a serial interface. In general, and
as will be discussed further in relation to FIG. 2, non-volatile
FRU inventory information includes, at a minimum, a serial
number associated with the FRU, a part number associated
with the FRU, and revision information, as well as an asset
tag, product name, chassis, and other implementation-spe-
cific information. The FRUID 190 may also include data
relating to the FRU’s operating history and service history.

As shown in the FIG. 1 embodiment, the baseboard 102
comprises a FRUID 190c¢. As configured, the baseboard itself
can be a FRU and comprises various submodules (e.g., power

10

15

20

25

30

35

40

45

50

55

60

65

8

supply 180, cooling fan 110, etc.), each of which can also be
FRUs comprising their own FRUID. As configured, the base-
board 102 is detachable from the computer system 100. Fur-
ther, the various submodules (e.g., power supply 180, cooling
fan 110, etc.) are also field replaceable and can be removed
from the baseboard 102, and hence the computer system 100.

Now moving to FIG. 2, an exemplary embodiment is dis-
played wherein a user 210 utilizes a FRU information con-
version module 220 to configure a particular FRU device,
e.g., power supply 180, with one or more files comprising
FRU inventory information.

According to the FIG. 2 embodiment, a FRU installation
station 230 is capable of interfacing with various FRU devices
(e.g., power supplies, cooling fans, input/output boards, pro-
cessing boards, system control boards, etc.). In the FIG. 2
embodiment, the FRU installation station 230 interfaces with
aFRU (e.g., power supply 180) via the interface 235, which is
configured to electronically transmit files comprising FRU
inventory information to the attached FRU (e.g., 180) such
that the FRU inventory information can be stored in the FRU
inventory device (e.g., 190). In other words, the FRU instal-
lation station 230 has the necessary hardware components
and software components that can be used to program
EEPROM or SEEPROM chip or any other type of suitable
memory chips used for FRUIDs. Further, though shown as
interfacing with a single FRU in the FIG. 2 embodiment, as
shown in the FIG. 3 embodiment, the FRU installation station
230 can be configured to interface with a plurality of FRUs at
any given time.

As further shown in the FIG. 2 embodiment, the FRU
installation station 230 is in operative communication with a
general purpose computer having the FRU information con-
version module 220 and utilized by a user 210. In the FIG. 2
embodiment, the computer connects to the FRU installation
station 230 via an interface 232, such that the FRU installation
station 230 can receive information from the FRU informa-
tion conversion module 220. In an alternate embodiment,
information generated by the FRU information conversion
module 220 (i.e., digital data) may be stored to a storage
medium (e.g., CD, CD-R, USB flash drive, etc.) and subse-
quently transferred to the FRU installation station 230.

As shown in the FIG. 2 embodiment, the FRU information
conversion module 220 is configured to receive certain FRU
information from a user 210 via a user interface and convert
the information into a standardized format that is readable by
a management controller such that the FRU and the manage-
ment controller can communicate and are interoperable.

According to IPMI standards, each FRUID is divided into
six information areas. The first area is the Common Header,
which is mandatory for all FRU Information Device imple-
mentations, and is the starting point for accessing FRU infor-
mation data. According to IPMI standards, the common
header holds version information for the overall information
format specification. Additionally, the common header oft-
sets to the other information areas. Per IPMI standards, the
other areas may or may not be present based on the applica-
tion of the device. According to the standard, an area is
specified as “null” or “not present” when the Common
Header has a value of 00h for the starting offset for that area.
The Common Header is present for all FRU information
devices in a particular computer system, and the data in the
Common Header provides the offsets to the other information
areas in the device (as described below). Additionally, the
Common Header includes a checksum such that the integrity
of the header data can be verified.

The second area, according to IPMI standards, is the Inter-
nal Use Area. This area provides private, implementation-



US 9,311,208 B2

9

specific information storage for other devices that exist on the
same FRU as the FRU information device. For example, in
certain embodiments, a baseboard may be configured as a
FRU with its own FRU information device. Various other
FRU devices may also exist on the baseboard, and the Internal
Use Area of the baseboard FRU includes information related
to those other FRU devices. Generally, the Internal provides
private non-volatile storage for a management controller such
as the BMC 140.

The third area, according to the IPMI standards, is the
Chassis Info Area, which is configured to hold serial number,
part number, and other information about the system chassis.
As indicated, a system can have multiple FRU information
devices within a chassis, but only one device should provide
the Chassis Info Area. Thus, this area will typically be absent
from most FRU information devices. Ideally this information
isina FRU device that is part ofa board that is associated with
the chassis, such as a front panel or power distribution board.
In many systems, however, such locations are not incorpo-
rated. Therefore, in certain embodiments, it is common to find
the Chassis Info Area included in the FRU information for the
baseboard.

The fourth area, per the IPMI standards, is the Board Info
Area. The Board Info Area provides serial number, part num-
ber, and other information about the actual board upon which
the FRU information device is located. As noted by the stan-
dard, the name “Board Info Area” is a bit of a misnomer as the
usage is not restricted solely to circuit boards. The area also
typically provides FRU information for any replaceable enti-
ties, boards, or sub-assemblies that are not sold as standalone
products separate from other components (e.g., individual
boards from a board set, or a sub-chassis or backplane that is
part of a larger chassis). As also noted by the IPMI standard,
the FRU device that provides info for the chassis is often
implemented in the same physical device that provides FRU
info for the overall product. In such cases, it may be common
to have both a product info area and a chassis info area in the
device’s FRUID. This device may reside on the motherboard
or on a chassis-related board, such as a circuit board for front
panel controls. If the overall product and the chassis share the
same basic identification information, it is often common to
have duplicate fields between the records. If the chassis is
orderable as a separate replacement part of the overall prod-
uct, however, then the serial number and part number in the
Chassis Info Area would typically be different than that for
the overall product. Further, since the Board Info Area pro-
vides a bit more info than the Chassis Info Area alone, it is
also typical to include a Board Info Area along with the
chassis info, though that’s not mandatory.

The fifth area, according to the IPMI standard, is the Prod-
uct Info Area. The Product Info Area is present where the FRU
itself is a separate product, such as would be the case with the
power supply 180. Other examples of FRUS that are separate
products include add-in cards and sub-assemblies. When the
Product Info Area is provided in the FRUID that also contains
the Chassis Info Area, the product information is for the
overall system as it was initially manufactured.

The Chassis Info Area, Board Info Area, and Product Info
Area each contain a number of variable-length fields. Accord-
ing to the standard, each of the fields is preceded by a type/
length byte that indicates the length of the field and the type of
encoding that is used for that particular field. The leading
fields in each area serve predefined functions, and each can be
followed by “custom” fields that are defined by the OEM or
by manufacturing. This same variable-length field format is
used for records within the MultiRecord Area (discussed
below).

10

15

20

25

30

35

40

45

50

55

60

65

10

The sixth and final area, per the IPMI standard, is the
MultiRecord Info Area. This area provides a region that holds
one or more records where the type and format of the infor-
mation is specified in the individual headers for the records.
This differs from the other information areas wherein the type
and format of the information are implied by which offset is
used in the first area (i.e., the Common Header). The Multi-
Record Info Area also provides a mechanism for extending
the FRU Information Specification to cover new information
types without impacting the existing area definitions.

In addition to the six storage area, the IPMI standard pro-
vides a suggested 2K-bit EEPROM organization structure.
According to the standard, the Common Header is 8 bytes, the
Internal Use Area is 72 bytes, the Chassis Info Area is 32
bytes, the Board Info Area is 64 bytes, and the Product Info
Area is 80 bytes, which is the minimum recommended allo-
cation.

In general, applications accessing FRU inventory informa-
tion begin by verifying the format version for the FRUID is a
version supported by the application by extracting the format
version information from the Common Header Area. Typi-
cally, the application then extracts the starting offset for the
desired area from the Common Header Area and subse-
quently accesses the “header” information specified at the
beginning of that area. Assuming the format version is cor-
rect, the application can proceed and access the data con-
tained therein. Since fields within an area can be fixed length
or variable length, applications generally “walk” the fields
sequentially. Therefore, applications typically traverse all
fields by walking individual fields until encountering an “end-
of-fields” type/length byte (generally value Clh).

Typically, each field begins with a fixed number of pre-
defined fields, which are then followed by a variable number
of'custom fields, which are optional. When fields are notused,
a “NULL” or “Empty” version of the field remains as a
placeholder, thus allowing the application to recognize the a
particular field (i.e., the Nth field) as always having the same
meaning.

In one embodiment, FRU information conversion module
220 receives various information relating to a particular FRU
device (e.g., power supply 180), and the script language con-
verts and formats the received information such that it
adheres to the IPMI standard and recommended EEPROM
organization. According to one embodiment, parses certain
information relating to a particular FRU device and, based on
the recognition of various indicators or characters, deter-
mines which information should be stored in the various
FRUID areas, and converts the information accordingly,
appending the information to include various offsets and
identifiers as necessary such that the information conforms to
the IPMI standard.

According to one embodiment, a FRU information conver-
sion module 220 utilizes a script language that is capable of
specifying a binary file (i.e., “FRU binary”) or other informa-
tion file that is formatted according to various IPMI standards
and to be programmed in a FRUID. In one embodiment, the
script language can be used to define what goes into the FRU
binary and the format of the information. In one embodiment,
the script language can be used to create a human-readable
file for certain FRUIDs that may not be configured to receive
FRU binaries.

In one embodiment, the FRU information conversion mod-
ule 220 may utilize a script language that utilizes the follow-
ing set of rules for encoding certain data that is both machine
readable and/or human readable. In one embodiment, the
FRU information conversion module 220 generates one or
more computer-readable binary files containing certain FRU



US 9,311,208 B2

11

inventory information as described above in accordance with
the IPMI standards. In particular, in one embodiment, the
conversion module may generate a single FRU image binary,
which includes a collection of data units or bytes representing
information relating to a particular FRU. In one embodiment,
the information (data units) in a FRU image binary is orga-
nized according to the common format as specified by IPMI
Platform Management FRU Information Storage Definition
v1.0, Document Revision 1.1, released Sep. 27, 1999 (i.e., the
“specification”), which is incorporated by reference in its
entirety. Generally, the FRU image binary comprises infor-
mation relating to the six FRUID areas, as discussed above
(i.e., Common Header Area, Internal Use Area, Chassis, Info
Area, Board Info Area, Product Info Area, and MultiRecord
Info Area).

In one embodiment, the FRU information conversion mod-
ule 220 generates fields relating to the Common Header Area.
In one embodiment, one field relating to the Common Header
Area identifies the format and version number of the specifi-
cation. Accordingly, in one embodiment, the FRU informa-
tion conversion module generates a field as “00000001” to
signify use of the specification. Other fields relating to the
Common Header Area include Internal Use Area Starting
Offset, Chassis Info Area Starting Offset, Boarde Area Start-
ing Offset, Product Area Starting Offset, MultiRecord Area
Starting Offset, PAD, and a Common Header Checksum.

According to one embodiment, the set of rules relating to
encoding FRU information relating to the Internal Use Area
and generating one or more information files for the FRU
image binary is as follows:

Iy

// Internal Use Area

/

// CustomDataFile: filename of binary file containing internal
// use data.

// example: CustomDataFile = "somefile.bin"

// notes: cannot be used with CustomDataString (one or the
// other, but not both)

/

// CustomDataString: string to be inserted into the internal use
// data.

// example: CustomDataString = "123"

// notes: cannot be used with CustomDataFile (one or the

// other, but not both).

/

I
I
//InternalUseArea

/{

/ CustomDataFile = "intdata.bin”

/ CustomDataString = "somecustomstring”
/}

T

According to one embodiment, after generating Common
Header Area fields, the program parses the received informa-
tion file and checks for a particular identifier, token, or tag that
signifies a particular FRUID area to which the information
immediately following relates. For example, according to one
aspect, when the program encounters a tag such as <Inter-
nalUseArea> or “InternalUseArea”, the program recognizes
that the information that follows relates specifically to the
Internal Use Area. According to the present embodiment,
upon encountering the FRUID area identifier (e.g., <Inter-
nalUseArea>), the program generates a first field (i.e., FRU
image binary byte) to identify the version of the specification
(i.e., “00000001”) being utilized.

In one embodiment, the program then checks for a subse-
quent identifier of information relating to the FRUID area.

10

15

20

25

30

35

40

45

50

55

60

65

12

For example, in one embodiment, the program encounters the
identifier <CustomDataFile> or “CustomDataFile”, which is
followed by the name and storage location of the particular
file (i.e., intdata.bin). The program then retrieves the particu-
lar file from the location as specified, and writes the informa-
tion contained in the particular file to the FRU image binary,
according to one embodiment. In certain embodiments, the
identifier will be followed by the name of the particular
parameter or value, but no location information, in which case
the program retrieves the parameter or value from a default
location. In certain embodiments, the identifier may instead
be followed by the actual information (e.g., parameter or
value), in the form of a data string, in which case no retrieval
is necessary. Instead, the data string (e.g., “somecustom-
string™) can be written directly to the FRU image binary. As
will be discussed below, in one embodiment, the program
generates a type/length byte that is also written to the FRU
binary image and precedes the byte(s) comprising the param-
eter or value. As will be understood, the various parameters or
values relate to various internal use data that are defined and
formatted according to the device that utilizes or owns the
Internal Use Area.

In one embodiment, the set of rules relating to encoding
FRU information relating to the Chassis Info Area and gen-
erating one or more information files is as follows:

Iy
// Chassis Info Area

/

// Type - chassis type enumeration.

// hex example: Type = 0x11

// decimal example: Type = 17

// values:

/ 1 - Other

/ 2 - Unknown

/ 3 - Desktop

/ 4 - Low Profile Desktop
/ 5 - Pizza Box

/ 6 - Mini Tower

/ 7 - Tower

/ 8 - Portable

/ 9 - LapTop

/ 10 - Notebook

/ 11 - Hand Held

/ 12 - Docking station

/ 13- All in One

/ 14 - Sub Notebook

/ 15 - Space-saving

/ 16 - Lunch Box

/ 17 - Main Server Chassis
/ 18 - Expansion Chassis
/ 19 - SubChassis

/ 20 - Bus Expansion Chassis
/ 21 - Peripheral Chassis
/ 22 - RAID Chassis

/ 23 - Rack Mount Chassis

// SerialNum - chassis serial number in quotes.

// example: SerialNum = "123"

/

// PartNum - chassis part number in quotes.

// example: PartNum = "123"

/

// CustomDataFile - filename of binary file containing one custom
// chassis info field.

// example: CustomDataFile = "customdata.bin”

/I notes:

/ -type/length will be set to binary/unspecified by FRU
/I information conversion module

/ -cannot be used with CustomDataString (one or the other, but
// not both)
/ - only one custom chassis info field is supported (not multiple)



US 9,311,208 B2

13

-continued

// CustomDataString - string to insert into the custom chassis info
// feld.

// example: CustomDataString = "ABC123"

/I notes:

/ - type/length byte type fields will be set to 8-bit ascii + latin
//'1 by FRU information conversion module

/ - cannot be used with CustomDataFile (one or the other, but not
// both)

I
I
//ChassisInfo Area

/{

/ Type =17

/ SerialNum = "Xxxxxxx"

/ PartNum = "XXxxxxx"

/ CustomDataFile = "chasdata.bin”

/ CustomDataString = "somecustomstring'
/}

T

According to one embodiment, after generating Internal
Use Area fields, the program continues to parse the received
information file and checks for an additional identifier or tag
that signifies another FRUID area to which the information
immediately following relates. In one embodiment, when the
program encounters a tag such as <ChassisInfoArea> or
“ChassisInfoArea”, the program recognizes that the informa-
tion that follows relates specifically to the Chassis Info Area.
Again, according to the present embodiment, upon encoun-
tering the FRUID area identifier (e.g., <ChassisArea>), the
program generates a first field to identify the version of the
specification (i.e., “00000001”) being utilized.

As discussed, in one embodiment, the program then checks
for a subsequent identifier of information relating to the Chas-
sis Info Area. For example, in one embodiment, the program
encounters an identifier relating to the particular type of chas-
sis utilized by the particular FRU. For example, the identifier
<Type> or ““Type” may be followed by a decimal or hexadeci-
mal value that identifies a particular chassis type. For
example, according to one embodiment, decimal value 17 or
equivalent hexadecimal value 0x11 specify a “Main Server
Chassis” chassis type, and the program generates a field to be
added to the FRU image binary indicating same. Various
chassis types and their respective identifiers are specified
above, according to the present embodiment.

In one embodiment, the program further parses the
received information for an identifier or tag associated with a
Chassis Part Number and/or Chassis Serial Information.
Upon encountering either, the program generates the appro-
priate bytes for inclusion in the FRU image binary. According
to one embodiment, the program first generates a type/length
byte that indicates to, for example, the BMC 140 the type of
information that will follow (i.e., binary or ASCII+Latin 1) as
well as the number of bytes that will comprise the serial
number or part number. In one embodiment, bits 7:6 provide
atype code wherein 00 specifies that the serial number or part
number formatted as binary and further wherein 11 specifies
ASCII+Latin 1. Therefore, if the program encountered an
identifier for the chassis serial number (e.g., SerialNum) fol-
lowed be a data string (e.g., 67849189), in one embodiment,
the program would first generate a type/length byte such as
“11000001” to indicate that the serial number was formatted
as ASCII+Latin 1 and that the bits comprising the serial
number (i.e., 67849189) would comprise the following single
byte.

According to one embodiment, in addition to the part and
serial numbers, the program may encounter one or more
identifiers for Custom Chassis Info fields (e.g., <Custom-

10

15

25

30

40

45

50

55

14

DataFile> or “CustomDataString”). As previously discussed,
in one embodiment, such identifiers are followed by the name
and storage location of a particular parameter (e.g., chastage-
Jbin) or by the value itself (e.g., “someustomstring”). As
discussed above, in one embodiment, the program first gen-
erates a type/length byte and then generates the subsequent
bytes that comprise the parameter or value. Further, accord-
ing to one embodiment, the program generates a type/length
byte that is encoded to indicate there are no subsequent infor-
mation fields relating to the Chassis Info Area (e.g., Clh), fills
any remaining unused space with 00h, and generates a Chas-
sis Info Checksum, all of which are added to the FRU image
binary.

In one embodiment, the set of rules relating to encoding
FRU information relating to the Board Info Area and gener-
ating one or more information files is as follows:

Iy

// Board Info Area

/

// Notes:

/ - mfg. date/time are handled automatically by FRU information
// conversion module; confirm the time is correctly set on the

// computer system used to implement FRU information conversion mod-
ule

I - fru file id is forced to null

/

// Manufacturer - board manufacturer name in quotes

// example: Manufacturer = "ABC"

/

// ProductName - board product name in quotes

// example: Product = "XYZ"

/

// SerialNum - board serial number in quotes

// example: SerialNum = "123"

/

// PartNum - board part number in quotes

// example: PartNum = "789"

/

// CustomDataFile - filename of binary file containing one custom
// manufacturing information field

// example: CustomDataFile = "customdata.bin”

/I notes:

/ - type/length will be set to binary/unspecified by FRU

/I information

/I conversion module and should not be in the data file

/ - cannot be used with CustomDataString (one or the other, but not
// both)
/ - only one custom manufacturing info field is supported (not

// multiple)

// CustomDataString - string to insert into the custom manufacturing
// info field

// example: CustomDataString = "ABC123"

/I notes:

/ - type/length byte type fields will be set to 8-bit ascii + latin
// 1 by FRU information conversion module

/ - cannot be used with CustomDataFile (one or the other, but not
/I both)

I

T g
T g
//BoardInfoArea

/{

/ Manufacturer = "Your Board Manufacturer”
/ Product Name = "Your Board Name"

/ SerialNum = "Xxxxxxx"

/ PartNum = "XXXxxxx"'

/ CustomDataFile = "brddata.bin”

/ CustomDataString = "somecustomstring'
/1'}

i

According to one embodiment, subsequent to generating
the Chassis Info Area bytes, the program continues parsing
the received information file and checks for an identifier or



US 9,311,208 B2

15
tag relating to the Board Info Area (e.g., <BoardInfoArea> or
“BoardInfoArea”). As previously discussed, in one embodi-
ment, upon encountering an identifier relating to the Board
Info Area, the program generates a byte to identify the version
of the utilized specification (i.e., “00000001”).

As discussed in relation to the Chassis Info Area above, the
program then parses the information for certain board-related
information identifiers such as, for example, manufacturer,
product name, serial number, part number, etc. As discussed
above, in one embodiment, upon encountering such an iden-
tifier, the program first generates a type/length byte associ-
ated with the value or parameter which is then followed by
one or more bytes comprising the value or parameter. Accord-
ing to one embodiment, the Board Info Area also includes
information relating to the data and time of the board’s manu-
facture, and the program generates a corresponding byte
accordingly that is written to the FRU image binary. Further,
in one embodiment, the Board Info Area may comprise cer-
tain custom manufacturing information fields that are speci-
fied by the manufacturer and which must be preceded by a
corresponding type/length byte, as previously discussed.

Further, as discussed in relation to the Chassis Info Area,
the program generates a type/length byte that is encoded to
indicate there are no subsequent information fields relating to
the Chassis Info Area (e.g., C1h), fills any remaining unused
space with O0h, and generates a Board Area Checksum, all of
which are added to the FRU image binary.

In one embodiment, the set of rules relating to encoding
FRU information relating to the Product Info Area and gen-
erating one or more information files is as follows:

I

// Product Info Area

/

// Notes:

I - fiu file id is forced to null

/

// Manufacturer - product manufacturer name in quotes
// example: Manufacturer = "ABC"

/

// ProductName - product name in quotes

// example: Product = "XYZ"

/

// SerialNum - product serial number in quotes

// example: SerialNum = "123"

/

// PartNum - product part number in quotes

// example: PartNum = "789"

/

// CustomDataFile - filename of binary file containing one custom
// product information field

// example: CustomDataFile = "customdata.bin”

/I notes:

/ - type/length will be set to binary/unspecified by FRU
/I information

/I conversion module and should not be in the data file

/ - cannot be used with CustomDataString (one or the other, but not
// both)
/ - only one custom product info field is supported (not multiple)

// CustomDataString - string to insert into the custom product info
// field
// example: CustomDataString = "ABC123"

/I notes:

/ - type/length byte type fields will be set to 8-bit ascii + latin

// 1 by FRU information conversion module

/ - cannot be used with CustomDataFile (one or the other, but not
// both)

/

I
I

//ProductInfoArea

o

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

/ Manufacturer = "Your Product Manufacturer”
/ Product Name = "Your Product Name"

/ SerialNum = "XXXxxxx"

/ Version ="1"

/ Asset Tag = "xx"

/ CustomDataFile = "brddata.bin”

/ CustomDataString = "somecustomstring”
/1'}

T g

According to one embodiment, subsequent to generating
the Board Info Area bytes, the program continues parsing the
received information file and checks for an identifier or tag
relating to the Product Info Area (e.g., <ProductInfoArea> or
“ProductInfoArea”). As previously discussed, in one embodi-
ment, upon encountering an identifier relating to the Product
Info Area, the program generates a byte to identify the version
of the utilized specification (i.e., “00000001>).

As discussed in relation to the Chassis Info and Board Info
Areas above, the program then parses the information for
certain product-related information identifiers such as, for
example, manufacturer, product name, serial number, part/
model number, version, asset tag, etc. As discussed above, in
one embodiment, upon encountering such an identifier, the
program first generates a type/length byte associated with the
value or parameter which is then followed by one or more
bytes comprising the value or parameter. According to one
embodiment, the Product Info Area may include a language
code. According to one embodiment, the Product Info Area
may comprise certain custom product information fields that
are specified by the manufacturer and which must be pre-
ceded by a corresponding type/length byte, as previously
discussed.

Further, as discussed previously, the program generates a
type/length byte that is encoded to indicate there are no sub-
sequent information fields relating to the Product Info Area
(e.g., Clh), fills any remaining unused space with 00h, and
generates a Board Area Checksum, all of which are added to
the FRU image binary.

In each of the examples and as discussed, the script utilized
by the FRU information conversion module 220 is configured
to receive various information relating to a particular device
and convert the information to one or more FRU binary files
or a FRU image binary. As previously discussed, the FRU
installation station 230 is configured to receive the FRU
binary files or other information files (e.g., via USB connec-
tion, detachable USB storage device, CD, CD-R, etc.) and
subsequently transmit the files to the FRUID 190a for storage
according to the IPMI suggested EEPROM organization or
other IPMI standard, as specified. As will be understood, the
various rule sets provided above are exemplary and are in no
way intended to be limiting. The FRU information conversion
module and associated script language and rule set can be
configured to receive and convert various other information
relating to a FRU device.

Systems and methods disclosed herein may be imple-
mented in digital electronic circuitry, in computer hardware,
firmware, software, or in combinations of them. Apparatus of
the claimed invention can be implemented in a computer
program product tangibly embodied in a machine-readable
storage device for execution by a programmable processor.
Method steps according to the claimed invention can be per-
formed by a programmable processor executing a program of
instructions to perform functions of the claimed invention by
operating based on input data, and by generating output data.



US 9,311,208 B2

17

The claimed invention may be implemented in one or several
computer programs that are executable in a programmable
system, which includes at least one programmable processor
coupled to receive data from, and transmit data to, a storage
system, at least one input device, and at least one output
device, respectively. Computer programs may be imple-
mented in a high-level or object-oriented programming lan-
guage, and/or in assembly or machine code. The language or
code can be a compiled or interpreted language or code.
Processors may include general and special purpose micro-
processors. A processor receives instructions and data from
memories. Storage devices suitable for tangibly embodying
computer program instructions and data include forms of
non-volatile memory, including by way of example, semicon-
ductor memory devices, such as EPROM, EEPROM, and
flash memory devices; magnetic disks such as internal hard
disks and removable disks; magneto-optical disks; and Com-
pact Disk. Any of the foregoing can be supplemented by or
incorporated in ASICs (application-specific integrated cir-
cuits).

The foregoing description of the exemplary embodiments
has been presented only for the purposes of illustration and
description and is not intended to be exhaustive or to limit the
inventions to the precise forms disclosed. Many modifica-
tions and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to
explain the principles of the inventions and their practical
application so as to enable others skilled in the art to utilize
the inventions and various embodiments and with various
modifications as are suited to the particular use contemplated.
Alternative embodiments will become apparent to those
skilled in the art to which the present inventions pertain with-
out departing from their spirit and scope. Accordingly, the
scope of the present inventions is defined by the appended
claims rather than the foregoing description and the exem-
plary embodiments described therein.

What is claimed is:

1. A system comprising

an information conversion module comprising a processor

and a non-volatile memory storing a computer-execut-

able program that, when executed by the processor, is

configured to

receive an information file containing information
related to a field replaceable unit (FRU) in a non-
binary format, wherein the information related to the

FRU comprises:

a first indicator specifying a first FRU information
device area from a plurality of FRU information
device areas in accordance with an IPMI format;
and

a second indicator corresponding to the first indicator,
and specifying at least one value for the first FRU
information device area specified by the first indi-
cator;

read a script file comprising conversion information
specifying conversion of the information of the infor-
mation file in the non-binary format to a binary format
in accordance with the IPMI format;
based on the conversion information of the script file,
parse the information file to obtain the first indicator
and the second indicator;

determine the first FRU information device area
specified by the first indicator; and

convert the at least one value specified by the second
indicator to a first data unit in the binary format;

generate a FRU image binary comprising the plurality of
the FRU information device areas in accordance with

20

40

45

50

55

65

18
the IPMI format and using the first data unit being
converted as a value stored in the first FRU informa-
tion device area specified by the first indicator; and
write the FRU image binary to a FRU information device
(FRUID) of the FRU.

2. The system of claim 1, wherein each of the first and
second indicators is one or more of the following: identifier,
token, and tag.

3. The system of claim 1, wherein the plurality of FRU
information device areas comprises a Common Header Area,
an Internal Use Area, a Chassis Info Area, a Board Info Area,
a Product Info Area, and a MultiRecord Area.

4.The system of claim 3, wherein the first FRU information
device area is the Internal Use Area, and further wherein the
at least one value specified by the second indicator is internal
use data.

5. The system of claim 4, wherein each of the at least one
value specified by the second indicator is one of “Custom-
DataFile” and “CustomDataString”.

6. The system of claim 3, wherein the first FRU information
device area is the Chassis Info Area, and further wherein the
at least one value specified by the second indicator is at least
one of chassis type, chassis part number, chassis serial num-
ber, and custom chassis information.

7. The system of claim 6, wherein each of the at least one
value specified by the second indicator is one of “Type”,
“SerialNum”, “Part Num”, “CustomDataFile”, and “Custom-
DataString”.

8. The system of claim 7, wherein the at least one value
specified by the second indicator comprises “Type” and a
value of “Type” identifies one of the following: other,
unknown, desktop, low profile desktop, pizza box, mini
tower, tower, portable, laptop, notebook, hand held, docking
station, all in one, sub notebook, space-saving, lunch box,
main server chassis, expansion chassis, subchassis, bus
expansion chassis, peripheral chassis, RAID chassis, or rack
mount chassis.

9. The system of claim 3, wherein the first FRU information
device area is the Board Info Area, and further wherein the at
least one value specified by the second indicator is at least one
of manufacturing date and time, board manufacturer, board
product name, board serial number, board part number, and
custom manufacturing information.

10. The system of claim 9, wherein each of the at least one
value specified by the second indicator is one of “Manufac-
turer”, “Product Name”, “SerialNum”, “Part Num”, “Cus-
tomDataFile”, and “CustomDataString”.

11. The system of claim 3, wherein the first FRU informa-
tion device area is the Product Info Area, and further wherein
the at least one value specified by the second indicator is at
least one of manufacturer name, product name, product part
number, product model number, product version, product
serial number asset tag, and custom manufacturing informa-
tion.

12. The system of claim 11, wherein each of the at least one
value specified by the second indicator is one of “Manufac-
turer”, “Product Name”, “SerialNum”, “Version”, “Asset
Tag”, “CustomDataFile”, and “CustomDataString”.

13. The system of claim 1, wherein the information related
to the FRU further comprises:

a third indicator specifying a second FRU information
device area from the plurality of FRU information
device areas in accordance with the IPMI format; and

a fourth indicator corresponding to the third indicator, and
specifying at least one value for the second FRU infor-
mation device area specified by the third indicator;



US 9,311,208 B2

19

wherein the computer-executable program, when executed

by the processor, is further configured to, based on the

conversion information of the script file,

parse the information file to obtain the third indicator
and the fourth indicator;

determine the second FRU information device area
specified by the third indicator; and

convert the at least one value specified by the fourth
indicator to a second data unit in the binary format,
wherein the second data unit being converted is used
as a value stored in the second FRU information
device area specified by the third indicator in the FRU
image binary being generated.

14. The system of claim 3, wherein the first FRU informa-
tion device area is the Common Header Area, and wherein the
atleast one value specified by the second indicator at least one
of version information of the IPMI format, Internal Use Area
Starting Offset, Chassis Info Area Starting Offset, Boarde
Area Starting Offset, Product Area Starting Offset, Multi-
Record Area Starting Offset, PAD, and a Common Header
Checksum.

15. A method, comprising:

receiving, via an information conversion module compris-

ing a processor, an information file containing informa-

tion related to a field replaceable unit (FRU) in a first
non-binary format, wherein the information related to
the FRU comprises:

a first indicator specifying a first FRU information
device area from a plurality of FRU information
device areas in accordance with an IPMI format; and

a second indicator corresponding to the first indicator,
and specitying at least one value for the first FRU
information device area specified by the first indica-
tor;

reading, via the information conversion module, a script

file comprising conversion information specifying con-

version of the information of the information file in the
non-binary format to a binary format in accordance with
the IPMI format;

based on the conversion information of the script file,

parsing, via the information conversion module, the
information file to obtain the first indicator and the
second indicator;

determining, via the information conversion module, the
first FRU information device area specified by the first
indicator; and

converting, via the information conversion module, the
at least one value specified by the second indicator to
a first data unit in the binary format;

generating, via the information conversion module, a FRU

image binary comprising the plurality of the FRU infor-
mation device areas in accordance with the IPMI format
and using the first data unit being converted as a value
stored in the first FRU information device area specified
by the first indicator; and

writing, via the information conversion module, the FRU

image binary to a FRU information device (FRUID) of

the FRU.

16. The method of claim 15, wherein each of the first and
second indicators is one or more of the following: identifier,
token, tag.

17. The method of claim 15, wherein the plurality of FRU
information device areas comprises a Common Header Area,
an Internal Use Area, a Chassis Info Area, a Board Info Area,
a Product Info Area, and a MultiRecord Area.

15

20

25

35

40

45

50

55

60

20

18. The method of claim 17, wherein the first FRU infor-
mation device area is the Internal Use Area, and further
wherein the at least one value specified by the second indica-
tor is internal use data.

19. The method of claim 15, wherein the information
related to the FRU further comprises:

a third indicator specifying a second FRU information
device area from the plurality of FRU information
device areas in accordance with the IPMI format; and

a fourth indicator corresponding to the third indicator, and
specifying at least one value for the second FRU infor-
mation device area specified by the third indicator;

wherein the method further comprises, based on the con-
version information of the script file,

parsing, via the information conversion module, the
information file to obtain the third indicator and the
fourth indicator;

determining, via the information conversion module, the
second FRU information device area specified by the
third indicator; and

converting, via the information conversion module, the
at least one value specified by the fourth indicatorto a
second data unit in the binary format, wherein the
second data unit being converted is used as a value
stored in the second FRU information device area
specified by the third indicator in the FRU image
binary being generated.

20. A non-transitory computer readable medium storing
computer-executable instructions configured to cause a com-
puter system to execute a method comprising:

receiving, via an information conversion module compris-
ing a processor an information file containing informa-
tion related to a field replaceable unit (FRU) in a first
non-binary format, wherein the information related to
the FRU comprises:

a first indicator specifying a first FRU information
device area from a plurality of FRU information
device areas in accordance with an IPMI format; and

a second indicator corresponding to the first indicator,
and specitying at least one value for the first FRU
information device area specified by the first indica-
tor;

reading, via the information conversion module, a script
file comprising conversion information specifying con-
version of the information of the information file in the
non-binary format to a binary format in accordance with
the IPMI format;

based on the conversion information of the script file,
parsing, via the information conversion module, the

information file to obtain the first indicator and the
second indicator;

determining, via the information conversion module, the
first FRU information device area specified by the first
indicator; and

converting, via the information conversion module, the
at least one value specified by the second indicator to
a first data unit in the binary format;

generating, via the information conversion module, a FRU
image binary comprising the plurality of the FRU infor-
mation device areas in accordance with the IPMI format
and using the first data unit being converted as a value
stored in the first FRU information device area specified
by the first indicator; and

writing, via the information conversion module, the FRU
image binary to a FRU information device (FRUID) of
the FRU.



